THE GROUP A3 CHONDRULES OF KRYMKHA: FURTHER EVIDENCE FOR MAJOR
EVAPORATIVE LOSS DURING THE FORMATION OF CHONDRULES. S. Huang, P.H. Benoit and
D.W.G. Sears. Cosmochemistry Group, Department of Chemistry and Biochemistry, University of Arkansas,
Fayetteville, AR 72701, USA

Like Semarkona (type 3.0), Krymka (type 3.1) contains two distinct types of chondrule (namely groups A and
B) which differ in their bulk compositions, phase compositions and CL properties. The group A chondrules in both
meteorites show evidence for major loss of material by evaporation; i.e. elemental abundance patterns, size, redox
state, olivine-pyroxene abundances. Group A and B chondrules probably formed from common or very similar
precursors by the same processes acting with different intensities, group A suffering greater mass-loss by evaporation
and reduction of FeO and SiO2. While Krymka chondrules share many primary mineralogical and compositional
properties with Semarkona chondrules, the minimal metamorphism it has suffered has also had a significant effect
on its chondrules.

A new comprehensive classification for chondrules based on the composition of their phenocrysts and
mesostases has been proposed1,2. The most primitive (type 3.0) ordinary chondrite, Semarkona, contains
chondrule groups, A1, A2, A5 and B1, while Krymka (type 3.1), contains groups, A3, B2 and A5. Group A1-3
chondrules contain CaO-rich mesostases and FeO-poor olivine, and sometimes pyroxene, while group B1,2
chondrules are composed of SiO2-rich mesostases, FeO-rich olivine and are generally pyroxene-free. Group
A5 chondrules contain Na2O-rich mesostases and FeO-rich olivine, and similar to those in equilibrated
chondrites. The proportions and abundances of these groups are listed in Table 1, which includes
cathodoluminescence data which may also be used for chondrule classification. Here we report our
continuing studies of primitive chondrules. We emphasize the A groups3,4, whose significance in ordinary
chondrites has only recently been realized5,6. Because of their smaller size and extreme friability7, we use
photographs of the CL of polished sections to select chondrules which are then removed by chiselling3. The
present report concerns chondrules from Krymka.

The CI-normalized INAA data for each chondrule group are plotted in Fig. 1. Clear compositional
differences are seen between the A3 and B2 groups, which resemble those previously observed between
group A1,2 and B1 chondrules in Semarkona3. Group A3 chondrules are enriched in refractory lithophile
elements and depleted in volatile elements with the depletion increasing steadily with volatility along the
series Mn-Na. In contrast, group B2 chondrules show a flat pattern of lithophile elements. Both group A3
and group B2 chondrules show depletions in siderophile and chalcophile elements relative to CI, although
group A3 chondrules may be slightly enriched in refractory siderophile elements (such as Ir, Co and Ni)
relative to group B2 chondrules.

Group A chondrules in both Semarkona8 and Krymka are generally smaller than group B chondrules, in
addition to being depleted in Na and other volatiles (Fig. 2). This is consistent with evaporative loss during
chondrule formation. On the basis of many laboratory experiments9-11, considerable Na loss is to be expected
during chondrule formation. The Na contents we now measure are, of course, upper limits for the Na in the
chondrule at peak temperature during formation because (1) mesostasis profiles indicate Na
recondensation12, (2) our chondrules may have matrix attached to them, (3) aqueous alteration13 and (4)
metamorphism1 may have redistributed Na. We suggest that the stronger correlation in Fig. 2 displayed by
Krymka results from metamorphic mobilization of Na. If the size difference between group A and group B
chondrules is due to evaporative loss (assuming 35% mass loss), then about 40% loss of Si (and somewhat less
Mg) and 60% loss of Fe are indicated. The relevant reactions, which also involve reduction of FeO and SiO2,
are of the sort3,4,14,17:

\[2Fe_2SiO_4(l) + Mg_2SiO_4(l) + 5H_2(g) \rightarrow 2MgSiO_3(l) + 4Fe(g) + SiO(g) + 5H_2O(g)\]

\[FeSiO_3(l) + 2MgSiO_3(l) + 3H_2(g) \rightarrow Mg_2SiO_4(l) + Fe(g) + 2SiO(g) + 3H_2O(g)\]

and since the first reaction is the most important there is a net increase in pyroxene, as observed experimentally.4,6,18,19. It seems unlikely to us that olivine and pyroxene reduction, volatile-loss, size, and the
olivine-pyroxene abundance trends could all be due to random fluctuations in precursors20,21. Rather, we
think that A and B chondrule groups probably had very similar precursor materials and were formed by the
same processes acting with different intensities, so that while group A chondrules suffered volatile-loss, group
B did not. Jones also suggested that type IA chondrules (a subset of group A) can be derived from type II
chondrules (a subset of group B) by reduction and volatilization of major elements such as Si, Fe and Na22.

The small sample size has made it impossible to obtain oxygen isotope data for group A chondrules, but
we can predict that group A1-3 chondrules should show greater mass-fractionated patterns and greater
isotope exchange with the surrounding gases than B2 chondrules. However, it is unclear whether the surrounding gas was 16O-rich, as inferred by the inverse correlation between 16O and size for Dhajala (H3.8) chondrules23, or 16O-poor as inferred by an 16O-depleted Mezo Madaras (L3 breccia) glass fragment24.

The A1 chondrules of Semarkona differ from the equivalent A3 chondrules of Krymka in the CL of the mesostases, probably due to metamorphism-driven changes in Mn or major structural changes12,25. Olivine and mesostasis compositions of A1 and A3 chondrules also differ1,2, and Krymka lacks the extremely volatile-poor chondrules observed in Semarkona (< 0.2% Na$_2$O), apparently because of diffusion during Krymka's extremely mild metamorphic episode. While mesostasis compositions of Semarkona B1 chondrules differ significantly from those of Krymka B2, bulk chondrule and phenocryst compositions are similar, presumably because of their relatively sluggish response to metamorphism.

In summary, group A3 chondrules in Krymka resemble the group A1,2 chondrules in Semarkona in many respects. They are equally abundant, being ~35% by number, with similar phase and bulk compositions. Semarkona B1 and Krymka B2 chondrules also closely resemble each other. However differences are present which reflect a very mild metamorphic overprint in Krymka, which is especially true for group A chondrules which are more responsive to metamorphism. For both meteorites, the differences between group A and B chondrules suggest to us that they formed from similar starting materials, but that group A chondrules suffered greater evaporative loss of mass, and reduction, during chondrule formation.

TABLE 1. Cathodoluminescence (CL), mesostasis and olivine compositions and frequency (Freq., %) of chondrule groups in Krymka and Semarkona.

<table>
<thead>
<tr>
<th>Mesos.</th>
<th>Mesos. OI</th>
<th>OI %FeO %CaO</th>
<th>Kry. Freq.</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>Norm</td>
<td>CL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>yellow</td>
<td>pl(An>50%) red</td>
<td><2</td>
<td>>0.17</td>
</tr>
<tr>
<td>A2</td>
<td>yellow</td>
<td>pl(An>50%) none/dull red</td>
<td>2-10</td>
<td>0.1-0.2</td>
</tr>
<tr>
<td>A3</td>
<td>blue</td>
<td>pl(An>50%) red</td>
<td><4</td>
<td>>0.2</td>
</tr>
<tr>
<td>A4</td>
<td>blue</td>
<td>pl(An>50%) none/dull red</td>
<td>>4</td>
<td>0.16-0.3</td>
</tr>
<tr>
<td>A5</td>
<td>blue</td>
<td>pl(An<50%) none</td>
<td>>10</td>
<td><0.16</td>
</tr>
<tr>
<td>B1</td>
<td>none</td>
<td>>30% Qtz none</td>
<td>7-25</td>
<td>0.08-0.3</td>
</tr>
<tr>
<td>B2</td>
<td>none</td>
<td>30-50% Qtz none/dull red</td>
<td>1-25</td>
<td>0.08-0.3</td>
</tr>
<tr>
<td>B3</td>
<td>purple</td>
<td>15-30% Qtz none</td>
<td>15-20</td>
<td><0.08</td>
</tr>
</tbody>
</table>

The compositional fields are not rectangular, see ref. 1.2. pl = plagioclase.
